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Concentration and Analysis of Dilute Colloidal Samples 
by Sedimentation Field-Flow Fractionation 

J .  C. GIDDINGS, G.  KARAISKAKIS, and K. D. CALDWELL 
DEPARTMENT OF CHEMISTRY 
UNIVERSITY OF UTAH 
SALT LAKE CITY, UTAH 841 I2 

ABSTRACT 

An on-channel c o n c e n t r a t i o n  procedure is d e s c r i b e d  i n  which 
l a r g e  volumes of d i l u t e  c o l l o i d a l  m a t e r i a l s  can he c o n c e n t r a t e d  a t  
t h e  head  of a n  FFF channe l  i n  p r e p a r a t i o n  f o r  s e p a r a t i o n  and  a n a l -  
y s i s .  The t h e o r y  of t h e  p rocedure  i s  d e s c r i b e d ,  w t t h  p a r t i c u l a r  
f o c u s  on expec ted  p e r t u r b a t i o n s  i n  r e t e n t i o n  and p l a t e  h e i g h t  due 
t o  t h e  f i n i t e  i n i t i a l  zone l eng th .  Two s i z e s  (0.357 and  
0.481 p m )  of p o l y s t y r e n e  la tex beads d i l u t e d  i n  volumes of up t o  
5 0  m l  are used  as  model c o l l o i d s .  S e p a r a t i o n  of t h e  two bead 
s i z e s  i s  demonstrated.  The beads are t h e n  s u b j e c t e d  t o  c a r e f u l  
r e t e n t i o n  and p l a t e  h e i g h t  measurements and t h e  r e s u l t s  compared 
t o  t h e o r e t i c a l  e x p e c t a t i o n s .  C e r t a i n  anomalies  are n o t e d  which 
may re la te  t o  t h e  r e v e r s i b l e  a d h e s i o n  of t h e  p a r t i c l e s  t o  t h e  
channe l  wa l l .  P o s s i b l e  e x t e n s i o n s  and r a m i f i c a t i o n s  of t h e  
t e c h n i q u e  a r e  noted. 

INTRODUCTION 

Sed imen ta t ion  f i e l d - f l o w  f r a c t i o n a t i o n  i s  t h e  FFF sub tech -  

n ique  which u t i l i z e s  a c e n t r i f u g a l  o r  g r a v i t a t i o n a l  f i e l d  t o  s e d i -  

ment component p a r t i c l e s  i n t o  t h e  c h a r a c t e r € s t i c  s t e a d y - s t a t e  

l a y e r  a g a i n s t  t h e  channe l  w a l l .  The t h i c k n e s s  of t h e  l a y e r  is a n  

e x p l i c i t  f u n c t i o n  of t h e  a p p l i e d  f i e l d ,  p a r t i c l e  s i z e ,  and t h e  
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726 G I D D I N G S ,  KARAISKAKIS, AND CALDWELL 

d e n s i t y  of bo th  t h e  p a r t i c l e s  and t h e  c a r r i e r  s o l u t i o n .  

l a r g e s t  p a r t i c l e s ,  of cour se ,  a r e  f o r c e d  most v i g o r o u s l y  toward 

t h e  channe l  w a l l  where f low v e l o c i t y  i s  lowes t  and, t h e r e f o r e ,  

t h e s e  p a r t i c l e s  become t h e  most h i g h l y  r e t a i n e d .  The f r a c t o g r a m  

(a graph of d e t e c t o r  r e sponse  v e r s u s  t h e  volume of carr ier  s o l u -  

t i o n  e l u t e d )  becomes a l i n e a r  mass spectrum f o r  w e l l  r e t a i n e d  par-  

t i c l e s  (1). 

The 

Sedimentat  i o n  FFF shows remarkable  r e s o l u t i o n  i n  t h e  s e p a r a -  

t i o n  of c o l l o i d a l  s i z e  p a r t i c l e s  (2).  The c h a r a c t e r i z a t i o n  of 

t h e s e  p a r t i c l e s  p roceeds  from two t y p e s  of o b s e r v a t i o n s :  1) r e t e n -  

t i o n  volume V r  i s  s p e c i f i c a l l y  dependent on p a r t i c l e  s i z e  and den- 

s i t y ,  and 2 )  p l a t e  h e i g h t  (measuring zone s p r e a d i n g  o r  peak wid th )  

is  a f u n c t i o n  of t h e  d i f f u s i o n  r a t e  and p o l y d i s p e r s i t y  of t h e  sam- 

p l e .  A number of d i f f e r e n t  m a t e r i a l s  ( i n c l u d i n g  v i r u s e s ,  l a t i c e s ,  

and emuls ions )  have been c h a r a c t e r i z e d  u s i n g  t h e  c o n v e n t i o n a l  sam- 

p l e  i n j e c t i o n  t e c h n i q u e  ( 3 ) .  In t h i s  case, a few m i c r o l i t e r s  of a 

f a i r l y  c o n c e n t r a t e d  sample (of t h e  o r d e r  of 1 t o  10% s o l i d s )  a r e  

i n j e c t e d  o n t o  t h e  head o f  t h e  channe l  w h i l e  t h e  c a r r i e r  s o l u t i o n  

i s  f lowing.  The f low is  t h e n  s topped  and t h e  f i e l d  a p p l i e d  by 

s t a r t i n g  t h e  r o t a t i o n  of t h e  c e n t r i f u g e .  A f t e r  a n  a p p r o p r i a t e  

s top-f low t ime i n  which t h e  sample r e l a x e s  i n t o  i t s  c h a r a c t e r i s t i c  

s t e a d y - s t a t e  l a y e r  t h i c k n e s s ,  t h e  f l o w  i s  s t a r t e d  and  t h e  f r a c t o -  

gram i s  gene ra t ed .  

I n  t h i s  paper ,  a t e c h n i q u e  f o r  d e a l i n g  w i t h  l a r g e  (up t o  50 

ml) volumes of d i l u t e  c o l l o i d a l  m a t e r i a l s  i s  p r e s e n t e d .  The pro- 

c e s s  c o n s i s t s  of two s t e p s .  I n  t h e  c o n c e n t r a t i o n  s t e p ,  t h e  sample 

i s  pumped i n t o  t h e  r o t a t i n g  c e n t r i f u g e  under  c o n d i t i o n s  of low 

f low and h i g h  f i e l d  and i s  t h e r e b y  c o n c e n t r a t e d  a t  t h e  head  of t h e  

channel .  In t h e  s e p a r a t i o n  s t e p ,  t h e  f i e l d  s t r e n g t h  i s  lowered 

and  t h e  f low r a t e  i n c r e a s e d  i n  o r d e r  t o  o b t a i n  t h e  normal migra- 

t i o n  and e l u t i o n  of t h e  sample. The flow r a t e  and  f i e l d  s t r e n g t h  

can be op t imized  independen t ly  i n  t h e  two s t e p s .  

K i rk l and  e t  a l .  have a l s o  proposed t h e  use  of h i g h  i n i t i a l  

f i e l d  s t r e n g t h s  t o  c o n c e n t r a t e  samples  i n  s e d i m e n t a t i o n  (FFF) 

( 4 ) .  T h e i r  work does not  i n c l u d e  t h e  concept  of changing f low 
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DILUTE COLLOIDAL SAMPLES 727 

r a t e  as w e l l  a s  f i e l d  s t r e n g t h  t o  o p t i m i z e  t h e  o v e r a l l  p rocedure .  

In o r d e r  t o  t e s t  t h e  v a l i d i t y  of t h i s  p rocedure  of on-channel 

c o n c e n t r a t i o n ,  a series of f r a c t o g r a m s  of w e l l  c h a r a c t e r i z e d  mono- 

d i s p e r s e  l a t ices  were r u n  i n  which t h e  amount of t h e  sample w a s  

h e l d  c o n s t a n t  w h i l e  t h e  volume i n  which it was c o n t a i n e d  was 

v a r i e d  o v e r  a 50,000-fold range. R e t e n t i o n  and  zone s p r e a d i n g  

showed a s u r p r i s i n g l y  small e f f e c t  i n  s p i t e  of t h e  l a r g e  sample 

volume i n j e c t e d .  T h i s  makes s e d i m e n t a t i o n  FFF a h i g h l y  a t t r a c t i v e  

t e c h n i q u e  f o r  t h e  c h a r a c t e r i z a t i o n  of samples  (such as t h o s e  of 

n a t u r a l  w a t e r )  where p a r t i c l e s  a r e  p r e s e n t  i n  low c o n c e n t r a t i o n .  

THEORY 

The u n d e r l y i n g  t h e o r y  of t h e  p r e s e n t  techntqr ie  d i v i d e s  i n t o  

two p a r t s :  t h e  b a s i c  t h e o r y  a p p l i c a b l e  t o  normal FFF o p e r a t i o n ,  

which e x t e n d s  as w e l l  t o  t h e  on-column c o n c e n t r a t i o n  t e c h n i q u e ,  

and  t h e  t h e o r y  p e c u l i a r  t o  on-column c o n c e n t r a t i o n .  We w i l l  a l s o  

d i s c u s s  i n  t h i s  s e c t i o n  t h e  ways i n  which t h e o r y  can  b e  used  f o r  

sample c h a r a c t e r i z a t i o n .  

Bas i c  Theory. 

In FFF, t h e  a p p l i c a t i o n  of a f i e l d  r e s u l t s  i n  t h e  f o r m a t i o n  

o€ a n  e x p o n e n t i a l  s t e a d y - s t a t e  l a y e r  i n  which p a r t i c l e  c o n c e n t r a -  

t i o n  c v a r i e s  w i t h  d i s t a n c e  x from t h e  w a l l  a s  (5)  

where co is t h e  c o n c e n t r a t i o n  a t  t h e  wall  and L i s  a c h a r a c t e r i s -  

t i c  l a y e r  dimension termed t h e  mean l a y e r  t h i c k n e s s .  The dimen- 

s i o n l e s s  r e t e n t i o n  pa rame te r  X i s  r e l a t e d  t o  L by 

x = a l w  ( 2 )  

where w i s  t h e  channe l  t h i c k n e s s .  
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728 GIDDINGS, KARAISKAKIS, AND CALDWELL 

In FFF,  as i n  chromatography, t h e  degree of r e t e n t i o n  can  be 

measured by t h e  r e t e n t i o n  r a t i o  R ,  which is t h e  r a t i o  of t h e  velo-  

c i t y  of t h e  r e t a i n e d  component t o  t h a t  of a vo id  

peak. Parameter R is a f u n c t i o n  only of X 

(nonre ta ined)  

A s  X approaches z e r o  ( w e l l  r e t a i n e d  components), t h e  above rela- 

t i o n s h i p  can be s i m p l i f i e d  t o  

R = 6X ( 4 )  

The r e t e n t i o n  parameter  X i s  determined by exper imenta l  parameters  

and p h y s i c a l  c o n s t a n t s  a s  fo l lows  

X = DfUw = R'T /Fw (5 )  

where D is  t h e  p a r t i c l e  d i f f u s i o n  c o e f f i c i e n t ,  U i s  t h e  mean l a t -  

e r a l  d r i f t  v e l o c i t y  induced by t h e  f i e l d  which e x e r t s  f o r c e  F ,  R '  

is t h e  gas c o n s t a n t ,  and T i s  t h e  a b s o l u t e  temperature .  

For sed imenta t ion  FFF a p p l i e d  t o  s p h e r i c a l  p a r t i c l e s ,  Equa- 

t i o n  5 becomes (6)  

( 6  1 3 X = 6kT/nd GwAp 

where k is  Roltzman's c o n s t a n t ,  G i s  t h e  a n g u l a r  a c c e l e r a t i o n  

(w r ,  w being  t h e  a n g u l a r  v e l o c i t y )  about  r a d i u s  r, d i s  t h e  

diameter  of t h e  p a r t i c l e ,  and Ap i s  t h e  d i f f e r e n c e  between t h e  

d e n s i t y  of t h e  p a r t i c l e  and t h a t  of t h e  c a r r i e r  s o l u t i o n .  

2 

The above c o n s i d e r a t i o n s  apply t o  t h e  downstream migra t ion  of 

p a r t i c l e s  under s t e a d y - s t a t e  condi t ions .  However, t h e r e  i s  a n  

important  t r a n s i e n t  p e r i o d  T i n  which t h e  p a r t i c l e s  r e l a x  i n t o  t h e  

s t e a d y - s t a t e  c o n f i g u r a t i o n .  Quant i ty  'I i s  approximated by t h e  

r a t i o  of t h e  maximum r e l a x a t i o n  d i s t a n c e  a p a r t i c l e  must t r a v e l ,  

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
3
:
4
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



DILUTE COLLOIDAL SAMPLES 729 

e q u a l  t o  channel  t h i c k n e s s  w ,  d i v i d e d  by the f ie ld- induced  velo-  

c i t y  u 

T = w / u  ( 7 )  

I f  we use U = D/wX, ob ta ined  from Equat ion 5, i n  t h i s  e x p r e s s i o n ,  

we g e t  

2 
‘I = w X / D  

We now use t h e  Stokes-Einstein equat€on f o r  D 

D = kT/3nqd 

and Equat ion 6 f o r  A ,  t h u s  t ransforming  Equation 8 t o  

When us ing  t h e  stop-flow method, flow should he h a l t e d  f o r  t h i s  

p e r i o d  of t i m e  as  c a l c u l a t e d  f o r  t h e  smallest r e t a i n e d  p a r t i c l e s  

i n  t h e  sample. Since t h e  s top-f low method cannot he used f o r  t h e  

cont inuous  i n j e c t i o n  procedure employed h e r e ,  t h e  e f f e c t  of r e l a x -  

a t i o n  on sample behavior  must be eva lua ted .  

T h i s  w i l l  be done i n  t h e  next  subsec t ion .  We t u r n  now t o  

zone broadening,  which a f f e c t s  t h e  r e s o l u t i o n  o b t a i n a b l e  i n  

a t t e m p t i n g  t o  s e p a r a t e  and a n a l y z e  p a r t i c l e s  of d i f f e r e n t  s i z e .  

Zone broadening i n  FFF can be accounted f o r  hy t h e  fo l lowing  p l a t e  

h e i g h t  Equat ion (5) 

(1 1) 2 H = 2DfR<v> f x w  <v>/D f CHI 

where t h e  f i r s t  t e r m  accounts  f o r  molecular  d i f f u s i o n  a l o n g  t h e  

channel  a x i s  ( u s u a l l y  n e g l i g € b l e  i n  sed imenta t ion  FFF) ,  t h e  second 

i s  a nonequi l ibr ium o r  mass t r a n s f e r  t e r m ,  and t h e  t h i r d  c o n s i s t s  
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7 30 G I D D I N G S ,  KARAISKAKIS, AND CALDWELL 

of c o n t r i b u t i o n s  due t o  nonidea l  processes  i n  t h e  system and t h e  

sample. The mean c a r r i e r  v e l o c i t y  <v> is a n  important  parameter  

from a n  exper imenta l  viewpoint because it  can be v a r i e d  r e a d i l y  

and can be used t o  s o r t  out  t h e  terms of Equat ion 11. 

The nonequi l ibr ium c o e f f i c i e n t  x i s  a complex f u n c t i o n  of X 

which assumes t h e  v a l u e  

f o r  t h e  l i m i t  of no r e t e n t i o n  (R = 1) and 

3 x = 241 

f o r  

e n t  

high r e t e n t i o n  (R,X + 0 ) .  

The t h i r d  t e r m  of Equat ion 11 h a s  been found t o  d e r i v e  almost  

r e l y  from a sample p o l y d i s p e r s i t y  c o n t r i b u t i o n  H under i d e a l  P 
exper imenta l  c o n d i t i o n s ,  i n  which a s m a l l  c o n c e n t r a t e d  sample i s  

i n j e c t e d  d i r e c t l y  on t h e  column ( 7 ) .  However, wi th  t h e  on-column 

c o n c e n t r a t i o n  procedure,  some new terms c o n t r i b u t e  t o  ZHi.  These 

must be eva lua ted  t o  e s t a b l i s h  c o n d i t i o n s  which a s s u r e  u s  t h a t  

h igh  r e s o l u t i o n  w i l l  be maintained.  

On-Column Concent ra t ion  Theory. 

The cont inuous  i n j e c t i o n  of l a r g e  volumes of sample e f f e c -  

t i v e l y  in t roduces  a sample s l u g  of f i n i t e  l e n g t h  a t  t h e  head of 

t h e  channel, b e f o r e  t h e  s e p a r a t i o n  s t e p  begins .  The f i n i t e  sample 

s l u g  has  t h e  e f f e c t  of i n c r e a s i n g  p l a t e  h e i g h t  and i n t e r f e r i n g  

w i t h  r e s o l u t i o n  hecause of i t s  l e n g t h ,  and, t o  some degree,  re- 

ducing r e t e n t i o n  volumes because t h e  c e n t e r  of g r a v i t y  of t h e  sam- 

p l e  i s  advanced f u r t h e r  i n t o  t h e  channel  b e f o r e  s e p a r a t i o n  commen- 

ces .  

Two p r o c e s s e s  c o n t r i b u t e  t o  t h e  formatton and f i n i t e  l e n g t h  

of t h e  sample s lug .  F i r s t ,  as  a small volume element of sample 

e n t e r s  t h e  channel  and d i s t r i h u t e s  over  i t s  c r o s s  s e c t i o n ,  re laxa-  
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DILUTE COLLOIDAL SAMPLES 731 

t i o n  commences but  a f f e c t s  d i f f e r e n t l y  p a r t i c l e s  i n  d i f f e r e n t  

p a r t s  of t h e  c r o s s  s e c t i o n .  

accumulat ion)  w a l l  are h e l d  t h e r e  and do not migra te  any s i g n i f i -  

can t  d i s t a n c e  diiring r e l a x a t i o n  t i m e  T. P a r t i c l e s  a t  t h e  i n s i d e  

( o r  evacuat ion)  w a l l  are swept downstream a t  mean v e l o c i t y  <vf> as  

they  t r a v e r s e  t h e  channel ,  t h u s  migra t ing  a d i s t a n c e  

P a r t i c l e s  next t o  t h e  o u t s i d e  ( o r  

h = < v ~ > / T  

dur ing  r e l a x a t i o n  time T (8) .  Particles s t a r t i n g  a t  o t h e r  p o i n t s  

of t h e  c r o s s  s e c t i o n  end up somewhere between z e r o  and ho down- 

stream. 

bimodal (8). 

The o v e r a l l  d i s t r i b u t i o n  of p a r t f c l e s  over  d i s t a n c e  ho i s  

A second process  c o n t r i b u t i n g  t o  t h e  f i n i t e  l e n g t h  of t h e  

sample s l u g  i s  t h e  cont inuous (but  slow) FFF migra t ion  of t h e  i n i -  

t i a l  p a r t  of t h e  depos i ted  s l u g  dur ing  t h e  per iod  i n  which t h e  

l a t t e r  p a r t  i s  being f e d  i n t o  t h e  channel. Over t h e  d u r a t i o n  of 

t h e  c o n c e n t r a t i o n  o r  feed  s t e p  t f ,  a sample w i t h  r e t e n t i o n  r a t i o  

Rf w i l l  d i s t r i b u t e  f t s e l f  a l o n g  a f r a c t i o n  of the channel  l e n g t h  

e q u a l  t o  R f V f / V o ,  where Vf i s  t h e  f e e d  volume of t h e  in t roduced  

sample and Vo i s  t h e  channel  void volume. Since t h e  f r a c t i o n  of 

t h e  t o t a l  channel  l e n g t h  L occupied by sample i s  t h e  above r a t i o  

R f V f / V o ,  t h e  l e n g t h  of occupancy so is  

so = R ~ V ~ L / V O  (15) 

The combined e f f e c t  of sample r e l a x a t i o n  and sample m i g r a t i o n  

dur ing  t h e  c o n c e n t r a t i o n  s t e p  l e a d s  t o  t h e  p o s i t i o n i n g  of t h e  cen- 

ter  of g r a v i t y  o f  t h e  sample slug a t  a d i s t a n c e  of approximate ly  

from t h e  head of t h e  channel .  The c e n t e r  of g r a v i t y  of t h e  e l u t e d  

peak w i l l  t h u s  emerge e a r l i e r  t h a n  expected accord ing  t o  t h e  t i m e  
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732 G I D D I N G S ,  KARAISKAKIS, AND CALDWELL 

r a t i o  (L-Zcg)/L. 

means of e l u t i o n  t i m e  o r  volume, w i l l  be h i g h e r  t h a n  t h e  t r u e  

v a l u e  by t h e  r a t i o  

Thus t h e  apparent  R va lue ,  Rapp, measured by 

T, R 
2 ! 3 L = L =  

L - Z L-(ho+ s o ) / 2  
Rt r u e  cg  

I f  t h i s  r a t i o  d i f f e r s  s i g n i f i c a n t l y  from u n i t y ,  t h e  observed R 

should be c o r r e c t e d  t o  i t s  t r u e  value. However, t h i s  may be d i f -  

f i c u l t  t o  do e x a c t l y  f o r  rea l  world samples ( f o r  example, non- 

s p h e r i c a l  p a r t i c l e s )  because of t h e  d i f f i c u l t y  of c a l c u l a t i n g  

T e x a c t l y  and t h e  problem of e s t i m a t i n g  Rf under  t h e  h i g h  f i e l d  

c o n d i t i o n s  of t h e  c o n c e n t r a t i o n  s t e p  i n  which complicated s te r ic  

and wall  adhes ion  e f f e c t s  might a f f e c t  migra t ion .  

Another concern is t h e  e f f e c t  of f i n i t e  s l u g  l e n g t h  on zone 

broadening as measured by p l a t e  h e i g h t .  To a good approximation 

w e  can assume t h a t  t h e  r e l a x a t i o n  and t h e  migra t ion  c o n t r i b u t i o n s  

t o  p l a t e  h e i g h t  are  independent and a d d i t i v e .  Thus t h e  e x t r a  

p l a t e  h e i g h t  term in Equat ion 11, C H I ,  c o n s i s t s  of t h e  t h r e e  terms 

CHI = H + Hf = H 
P P 

+ H r  + Hm 

where Hp is t h e  sample p o l y d i s p e r s i t y  c o n t r i b u t i o n  mentioned 

ear l ier  and Hf is  t h e  t o t a l  €eed c o n t r i b u t i o n  c o n s i s t i n g  of t h e  

r e l a x a t i o n  c o n t r i b u t i o n  Hr and t h e  migra t ton  component Hm. 

It has  been shown t h a t  t h e  r e l a x a t i o n  c o n t r i b u t i o n  amounts t o  

Hr = 17hO2/140L (19) 

Migrat ion,  on t h e  o t h e r  hand, has  t h e  e f f e c t  of s t a r t i n g  t h e  s a m -  

p l e  out  as  a uniform s l u g  d i s t r i b u t e d  over  d i s t a n c e  so. 

y i e l d s  a p l a t e  h e i g h t  c o n t r i b u t i o n  of (10) 

This  

Hm = sO2/12L 
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DILUTE COLLOIDAL SAMPLES 733 

Thus t h e  t o t a l  f e e d  cont r ibu t ion- - the  p a r t  unique t o  t h e  on-column 

c o n c e n t r a t i o n  method--is given by 
0 0 17hoL S L 

Hf = Hr + Hm = - +l 140L 12L (21)  

We have ignored  h e r e  as  a second o r d e r  e f f e c t  t h e  p e r t u r b a t i o n  of 

Equat ion 11 by t h e  f a c t  t h a t  t h e  zone i s  not g e n e r a t i n g  i t s  cal-  

c u l a t e d  p l a t e  h e i g h t  va lues  over  t ts  e n t i r e  length .  The zone i s  

i n s t e a d  s u b j e c t  t o  one p l a t e  h e i g h t  va lue  f o r  any migra t ion  occur-  

r i n g  i n  t h e  c o n c e n t r a t i o n  s t e p  and a n o t h e r  f o r  migra t ion  dur ing  

t h e  s e p a r a t i o n  s t e p ,  f o r  which t h e  mean migra t ion  p a t h  l e n g t h  i s  L 

- Zcg r a t h e r  t h a n  L. 
S e v e r a l  c r i t e r i a  can be developed t o  make s u r e  t h a t  Hf i s  not  

excess ive .  

exceed a c e r t a i n  f r a c t i o n  of t h e  t o t a l  p l a t e  he ight .  However, 

s i n c e  t h e  o t h e r  components of p l a t e  h e i g h t  vary widely accord ing  

t o  exper imenta l  and sample c o n d i t i o n s ,  i t  i s  perhaps b e s t  t o  e s t a -  

b l i s h  some reasonable  performance c e t l i n g  t o  which we a r e  conf ined  

by v i r t u e  of H f .  

t o  no fewer t h a n  Nf t h e o r e t i c a l  p l a t e s  

It is  p o s s i b l e ,  € o r  example, t o  r e q u i r e  t h a t  Hf no t  

Most s imply,  w e  can r e q u i r e  t h a t  Hf c o n f i n e  u s  

L 4LL 

Nf = Hf = 17h02/35 + sO2/3 
(22)  

For example, i f  ho i s  n e g l i g i b l e ,  a t e n  percent  occupancy by t h e  

i n i t i a l  sample s l u g ,  so/L = 0.1, w i l l  permit  Nf = 1200 p l a t e s ,  

whi le  a twenty percent  occupancy w i l l  e s t a b l i s h  a c e i l i n g  of Nf = 

300 p l a t e s .  

The o t h e r  p l a t e  h e i g h t  processes  w i l l  reduce t h e  p l a t e  count  below 

Nf. 
mass r e s o l u t i o n  i n  sed imenta t ion  FFF because of t h e  h i g h  s e l e c t i v -  

i t y  of t h e  l a t te r .  

t o  r e s o l v e  ( a t  u n i t  r e s o l u t i o n )  p a r t i c l e s  d i f f e r i n g  i n  mass by 

only 20 p e r c e n t ,  which € o r  spheres  corresponds t o  a diameter  d i f -  

f e r e n c e  of only 6.2 percent  (11) .  

I f  bo th  so/L = 0.1 and ho/L = 0.1, Nf = 488 p l a t e s .  

However, a few hundred p l a t e s  are s u f f i c i e n t  f o r  e x c e p t i o n a l  

For example, 400 t o t a l  p l a t e s  are s u f f i c i e n t  
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7 3 4  G I D D I N G S ,  KARAISKAKIS, AND CALDWELL 

The above arguments  sugges t  t h a t  f o r  most p a r t i c l e  a n a l y s i s ,  

t h e  i n i t i a l  s l u g  is a d e q u a t e l y  narrow i f  i t s  two c o n t r i b u t i n g  

p a r t s  occupy no more t h a n  t e n  p e r c e n t  of t h e  channe l  each: 

h0/L 6 0.1, s /L 6 0.1. In o r d e r  t o  r e a l i z e  t h e  f i r s t  c o n d i t i o n  it 

i s  advantageous t o  impose h i g h  f i e l d s  and l i m i t e d  f low d u r i n g  t h e  

c o n c e n t r a t i o n  s t e p  u s i n g  a channe l  of narrow width.  The second 

c o n d i t i o n  i s  most e a s i l y  r e a l i z e d  u s i n g  h i g h  f i e l d s  ( u n l e s s  t h e  

s te r ic  t r a n s i t i o n  i s  exceeded)  and l i m i t e d  sample d i l u t i o n .  It 

might be p o s s i b l e  t o  f u r t h e r  l i m i t  so by grooving,  roughening,  o r  

d e p o s i t i n g  a t h i n  porous l a y e r  on t h e  f i r s t  t e n  o r  so p e r c e n t  of 

t h e  accumula t ion  w a l l  t o  r e t a r d  FFF m i g r a t i o n  i n  t h e  c o n c e n t r a t i o n  

s t e p  p rov ided  m i g r a t i o n  i n  t h e  s e p a r a t i o n  s t e p  was n o t  a d v e r s e l y  

a f f e c t e d .  Parameter  so might  he reduced a l s o  by e s t a b l i s h i n g  con- 

d i t i o n s  conducive t o  r e v e r s i b l e  adhes ion ,  which phenomenon a p p e a r s  

t o  be o c c u r r i n g  i n  t h e  p r e s e n t  sys t em ( s e e  helow). 

Sample C h a r a c t e r i z a t i o n .  

We have developed methods f o r  e x t r a c t i n g  a c c u r a t e  i n f o r m a t i o n  

on mean p a r t i c l e  d i ame te r  (o r  volume f o r  n o n s p h e r i c a l  p a r t i c l e s ) ,  

s t a n d a r d  d e v i a t i o n  i n  d i ame te r  o r  volume, and p a r t i c l e  d e n s i t y  

u s i n g  small c o n c e n t r a t e d  samples.  These methods can he ex tended  

t o  d i l u t e  samples  l i k e  t h o s e  used  h e r e  w i t h  c e r t a i n  p r e c a u t i o n s .  

Our c h a r a c t e r i z a t i o n  work h a s  s o  f a r  d e a l t  w i t h  samples  of low 

p o l y d i s p e r s i t y  bu t  c o u l d  be ex tended  t o  h i g h  p o l y d i s p e r s i t y  sam- 

p l e s  ( con t inuous  d i s t r i b u t i o n )  d e a l i n g  i n d i v i d u a l l y  w i t h  narrow 

c u t s  from a broad spectrum fractogram. 

We n o t e  f i r s t  of all t h a t  X i s  u n i q u e l y  r e l a t e d  t o  p a r t i c l e  

d i ame te r  d through Equa t ion  6 and t h a t  R depends on X as shown i n  

Equat ion 3. Thus i t  i s  p o s s i b l e  i n  f a v o r a b l e  c i r c u m s t a n c e s  t o  

d e r i v e  mean d v a l u e s  t o  w i t h i n  abou t  one p e r c e n t  accu racy  u s i n g  

FFF r e t e n t i o n  (7) .  The e q u a t i o n  can  he v e r y  s imply ex tended  t o  

p a r t i c l e  volume f o r  n o n s p h e r i c a l  p a r t i c l e s .  The method i s  a p p l i -  

c a b l e  t o  d i l u t e  samples  u s i n g  on-column c o n c e n t r a t i o n  p rov ided  t h e  

r a t i o  i n  Equa t ion  1 7  i s  w i t h i n  a few p e r c e n t  of u n i t y  o r  t h a t  a 

c o r r e c t i o n  i s  made f o r  t h e  d e p a r t u r e  from u n i t y .  
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DILUTE COLLOIDAL SAMPLES 735 

It i s  a l s o  p o s s i b l e  t o  measure p a r t i c l e  d e n s i t y  by measu r ing  

r e t e n t i o n  i n  c a r r i e r s  of two o r  more d i f f e r e n t  d e n s i t i e s .  

Equa t ion  11 s u g g e s t s  t h a t  a p l o t  of p l a t e  h e i g h t  H v s  f low 

v e l o c i t y  <v> is a s t r a i g h t  l i n e  ( s i n c e  t h e  f i r s t  term i s  n e g l i g i -  

b l e  a t  a l l  p r a c t i c a l  v e l o c i t i e s )  whose s l o p e  y i e l d s  t h e  r a t i o  x / D .  

Both x and D r e l a t e  t o  p a r t i c l e  d i ame te r  d ( s e e  Equa t ions  13 and 6 

a l o n g  w i t h  Equa t ion  9), and can  be used  t o  conf i rm t h e  v a l u e  of d 

o b t a i n e d  from r e t e n t i o n  measurements. A l t e r n a t e l y ,  D can be used  

independen t ly  t o  de t e rmine  d, and t h e  X f rom r e t e n t i o n  measure- 

ments can be used  t o  de t e rmine  LIP, t h u s  y i e l d i n g  t h e  d e n s i t y  f o r  

s p h e r i c a l  p a r t i c l e s  whose d e n s i t y  i s  no t  known. For  n o n s p h e r i c a l  

p a r t i c l e s ,  D can be used  independen t ly  t o  c h a r a c t e r i z e  p a r t i c l e  

shape. 

The i n t e r c e p t  of t h e  H v e r s u s  <v> c u r v e  shou ld  e q u a l  t h e  sum 

of Hp and Hf i n  Equat ion 18. 

l a t e d ,  H c a n  he o b t a i n e d  from t h e  i n t e r c e p t  and  c a n  be  used  t o  

c h a r a c t e r i z e  sample p o l y d i s p e r s i t y  ( 7 ) .  

I f  Hf is n e g l i g i h l e  o r  can be c a l c u -  

P 

EXPERIMENTAL 

Apparatus  and M a t e r i a l s .  

A s t a n d a r d  model of t h e  s e d i m e n t a t i o n  FFF a p p a r a t u s  d e s c r i b e d  

p r e v i o u s l y  ( 3 )  was used i n  t h e s e  s t u d i e s .  The channe l  dimensions 

were: l e n g t h  L = 83.3 cm, wid th  w = 0.0254 cm, and b r e a d t h  a = 2.0 

cm. The vo id  volume of t h i s  channe l  w a s  measured as 4.5 m l  by 

e l u t i o n  of a n o n r e t a i n e d  peak. 

from t h e  c e n t e r  of r o t a t i o n .  A G i l s o n  Min ipu l s  2 p e r i s t a l t i c  pump 

was used  t o  f e e d  t h e  sample d u r i n g  t h e  c o n c e n t r a t o n  s t e p  and t o  

m a i n t a i n  f low d u r i n g  t h e  s e p a r a t i o n  s t e p .  A Reckman UV Monitor  

(Model 153) w a s  u sed  f o r  de t ec tLon  a t  254 nm. An Omniscr ibe s t r i p  

c h a r t  r e c o r d e r  (Houston I n s t r u m e n t s )  w a s  u sed  t o  r e c o r d  t h e  f r a c -  

tograms. 

The channe l  was p o s i t i o n e d  7.7 cm 

The samples  were monodisperse  p o l y s t y r e n e  l a t e x  beads (Dow 

Chemical Co.) w i t h  nominal d i ame te r s  of 0.357 f 0.0056 u m  and  
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736 GIDDINGS , KARAISKAKIS,  AND CALDWELL 

0.481 f 0.0018 urn. These were o b t a i n e d  from t h e  manufac tu re r  as  

d i s p e r s i o n s  c o n t a i n i n g  10% s o l i d s .  They were e i t h e r  u sed  i n  t h a t  

form o r  d i l u t e d  w i t h  t h e  c a r r i e r  s o l u t i o n  t o  s t u d y  sample d i l u t i o n  

e f f e c t s .  The c a r r i e r  was doubly d i s t i l l e d  w a t e r  c o n t a i n i n g  0.1% 

by volume F1-70 d e t e r g e n t  ( F i s h e r  S c i e n t i f i c  Co. )  and 0.02% by 

weight  sodium a z i d e  as  a b a c t e r i o c i d e .  The c a r r i e r  s o l u t i o n  was 

degassed p r i o r  t o  u s e  by h e a t i n g  t o  7OoC. 

Exper imen ta l  Procedure.  

1. 0.357 p m  Beads. D i l u t e d  samples  were p r e p a r e d  by a d d i n g  

1 ~1 of t h e  10% s o l i d s  sample t o  1, 5,  10, 20, 30, 40, and 50 m l  

of c a r r i e r  s o l u t i o n .  S t anda rd  f r ac tog rams  were r u n  w i t h  1 p 1  of 

t h e  u n d i l u t e d  10% s o l i d s  sample u s i n g  t h e  normal p rocedure  of i n -  

j e c t i n g  t h e  sample o n t o  t h e  column w i t h  a mic rosy r inge ,  s t o p p i n g  

t h e  flow t o  r e l a x  t h e  sample f o r  4.41 minutes  a t  1800 rpm, t h e n  

r educ ing  t h e  f i e l d  t o  880 rpm t o  e l u t e  t h e  sample a t  f low rates 

rang ing  from 12.6  t o  52.5 n l l h r .  A series of f r ac tog rams  w i t h  

d i l u t e d  samples  w a s  t h e n  o b t a i n e d  where t h e  c o n c e n t r a t i o n  s t e p  

c o n s i s t e d  of pumping t h e  d i l u t e d  sample a t  a r a t e  of 5.80 m l / h r  

i n t o  t h e  channe l  w h i l e  it w a s  r o t a t i n g  a t  1800 rpm. When t h e  sam- 

p l e  was consumed, pumping w a s  con t inued  a t  t h e  same ra te  w i t h  3.4 

m l  of c a r r i e r  s o l u t i o n  t o  clear t h e  sample from t h e  pump. Then 

t h e  f i e l d  was reduced and f low r a t e  i n c r e a s e d  t o  e l u t e  t h e  sample.  

The r e l a x a t i o n  t ime  unde r  t h e s e  c o n d i t i o n s  was c a l c u l a t e d  t o  be 

4.41 minutes .  

s u r e d  f o r  e a c h  fractogram. 

2. 0.481 I im Beads. D i l u t e d  samples  were p repa red  by add ing  

1 p 1  of 10% s o l i d s  sample t o  5 ,  10, 20, and 50 m l  of carr ier  so lu -  

t i o n .  The e x p e r i m e n t a l  p rocedure  ahove was r e p e a t e d  excep t  t h a t  

t h e  c o n d i t i o n s  d u r i n g  sample f e e d  were a f low r a t e  of 7.58 m l / h r  

and a f i e l d  of 1400 rpm. E l u t i o n  w a s  a t  500 rpm a t  f l ow rates 

r a n g i n g  from 24.1 t o  53.9 ml/h r .  

c le  under  t h e s e  c o n d i t i o n s  w a s  3.35 minutes .  

R e t e n t i o n  volumes Vr  and p l a t e  h e i g h t s  H were m e a -  

R e l a x a t i o n  t ime f o r  t h i s  p a r t i -  
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RESULTS AND DISCUSSION 

737 

F i g u r e  1 p r o v i d e s  a comparison of f r ac tog rams  f o r  t h e  

0.357 u m  beads i n j e c t e d  a s  a narrow p u l s e  ( t o p )  and i n j e c t e d  a t  

10 m l  d i l u t i o n  (bot tom) by t h e  p rocedure  d e s c r i h e d  here .  The 

f i g u r e  shows t h a t  t h e  e l u t e d  peak from t h e  d i l u t e d  sample emerges 

i n t a c t  and w i t h o u t  s e r i o u s  d e g r a d a t i o n  d e s p i t e  t h e  f a c t  t h a t  t h e  

sample volume (10 m l )  i s  ove r  twice t h e  channel  volume (4 .5  m l ) .  

Tab le  1 l i s t s  t h e  a p p a r e n t  r e t e n t i o n  r a t i o  R a s  measured 

f o r  bo th  of t h e  p a r t i c l e  s t a n d a r d s  a t  t h e  d i l u t i o n s  given.  A l s o  
aPP 

sta 1 

'"'I 
1 I 1 

A 1 2 3  
Field reduction TlME (hrs) 

Feed I 
I I I I I , I I 1 I 1  I ,  

0 5 10 
TIME (hrs) 

FIGURE 1. R e t e n t i o n  of p o l y s t y r e n e  l a t e x  beads of 0 . 3 5 7 ~  m 
d i ame te r  f o l l o w i n g  A d i r e c t  i n j e c t i o n  of 1 111 sample and R f eed -  
i n j e c t i o n  of 10 m l  sample. The amount of s o l i d s  w a s  0.1 mg i n  
b o t h  cases, and t h e  working f i e l d  w a s  880 rpm. In case R, t h e  
c o n c e n t a t i o n  s t e p  was c a r r i e d  ou t  w h i l e  pumping a t  5.8 ml/h w i t h  
t h e  channe l  s p i n n i n g  a t  1800 rpm. In t h e  s e p a r a t i o n  s t e p ,  t h e  
f low rates were 35.2  ml/h (A)  and 30.8 ml/h (R). 
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7 38 GIDDINGS, KARAISKAKIS, AND CALDWELL 

TABLE 1 

Retent ion  R a t i o  and o t h e r  Parameters  f o r  0.1 mg Samples of Two 
Polys tyrene  Latex Beads of Nominal Diameters 0.357 pm and 0.481 

pm D i l u t e d  i n  Feed Volume Vf. 

"i Ra =Vo /V '01' so/' R a p p P t r u e  Rapp 
(ml) (e-1 ( t h e o r )  ( t h e o r )  ( t h e o r )  ( t h e o r )  

0 

1 

5 

10 

20 

30  

40 

50 

0 

5 

10 

20 

14 

- 
0.122 

0.124 

0.124 

0.124 

0.124 

0.124 

0.124 

0.123 

0.119 

0.120 

0.121 

Bead Diameter ( pm): 0.357 

0.0 0.0 1 .o 
0.100 0.007 1.056 

0.100 0.035 1.072 

0.100 0.071 1.093 

0.100 0.141 1.137 

0.100 0.212 1.185 

0.100 0.283 1.237 

0.100 0.353 1.293 

Bead Diameter ( pm): 0.481 

0.0 0.0 1 .o 
0.100 0.019 1.063 

0.100 0.037 1.074 

0.100 0.074 1.095 

0.100 0.185 1.166 

0.120 

0.127 

0.129 

0.131 

0.136 

0.142 

0.148 

0.155 

0.118 

0.125 

0.127 

0.129 

0.138 

shown a r e  t h e  r a t i o s  ho/L and so/L,  c a l c u l a t e d  by means of Equa- 

t i o n s  14 and 15, r e s p e c t i v e l y .  The t o p  row of t h e  t a b l e  f o r  each 

of t h e  p a r t i c l e  d iameters  shows only t h e  t h e o r e t i c a l  e n t r i e s  € o r  

(0.120 and 0.118) c a l c u l a t e d  by means of Equat ions 6 and 3. RaPP 
T h i s  c a l c u l a t i o n  I s  based on a d e l t a  €unct€on s t a r t i n g  zone, ho = 

s o  = 0. 

ear l ie r  observa t tons  of a c l o s e  correspondence between theory  and 

experiment (7). 

We c o n s i d e r  t h i s  va lue  q u i t e  r e l i a b l e  based on o u r  
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DILUTE COLLOIDAL SAMPLES 7 39 

aPP According t o  Equa t ion  1 7 ,  t h e  measured r e t e n t i o n  r a t i o s  R 

shown i n  t h e  t a b l e  shou ld  i n c r e a s e  s i g n i f i c a n t l y  w i t h  i n c r e a s i n g  

f e e d  volume because  of t h e  c o n c u r r e n t l y  i n c r e a s i n g  so va lue .  

magnitude of t h e  t h e o r e t i c a l l y  expec ted  i n c r e a s e  i s  shown in t h e  

l as t  column. However, beyond a small o v e r a l l  i n c r e a s e  i n  Rapp 

w i t h  r e s p e c t  t o  t h e  base  v a l u e s  of 0.120 and 0.118 f o r  t h e  two 

heads,  t h e r e  i s  e s s e n t i a l l y  no t r e n d  w i t h  i n c r e a s i n g  V f .  T h i s  

f a i l u r e  t o  f o l l o w  t h e  t h e o r e t i c a l  t r e n d  appea r s  t o  r e l a t e  t o  re- 

c e n t  o b s e r v a t t o n s  i n  o u r  l a b o r a t o r y  t h a t  c o l l o i d a l  p a r t i c l e s  o f t e n  

adhe re  t o  t h e  column wall. a t  h i g h  f i e l d s ,  hut  are r e l e a s e d  when 

f i e l d  s t r e n g t h  i s  reduced t o  some more o r  l e s s  d i s c r e t e  va lue .  We 

t h u s  s u g g e s t  t h a t  o u r  r e s u l t s  are c o n s i s t e n t  w i t h  t h e  concep t  t h a t  

the r e l a x a t i o n  c o n t r i b u t i o n  ( expres sed  through ho) o c c u r s  much as  

expec ted  bu t  t h a t  t h e  p a r t i c l e s  adhe re  t o  t h e  w a l l  soon a f t e r  con- 

t ac t ,  t h u s  r educ ing  so e s s e n t i a l l y  t o  zero.  

The 

Support  f o r  t h i s  mechanism was found when w e  a t t e m p t e d  t o  

s e p a r a t e  t h e  two p a r t i c l e  s t a n d a r d s  (dp = 0.357 and 0.481 pm) i n i -  

t i a l l y  mixed t o g e t h e r  in a volume V f  of 10 m l .  

f e d  i n t o  t h e  channe l  a t  a r a t e  of 5.8 ml /h r  w h i l e  t h e  channe l  was 

r o t a t i n g  a t  1800 rpm; t h e  f i e l d  was subsequen t ly  reduced t o  a 

working l e v e l  of 880 rpm f o r  t h e  s e p a r a t i o n  s t e p .  T h i s  working 

f i e l d  was expec ted  t o  cause  e l u t i o n  of t h e  smaller beads a t  34 m l  

and t h e  l a r g e r  heads a t  114  m l .  The s m a l l e r  beads d i d  e l u t e  a t  34 

m l  a s  p r e d i c t e d ,  but  t h e  l a r g e r  p a r t i c l e s  had s t i l l  no t  appea red  

a f t e r  150 m l .  

r e l e a s e d  t h e  h e a v i e r  beads. F i g u r e  2 demons t r a t e s  t h i s  t y p e  of 

s t e p w i s e  f i e l d  r e d u c t i o n .  D e s p i t e  t h e  anomalous r e t e n t i o n ,  t h e  

two p a r t i c l e  s i z e s  are almost  b a s e l i n e  r e so lved .  Thus, w h i l e  a s  

y e t  poor ly  understood,  t h e  w a l l  a d h e s i o n  i s  no t  n e c e s s a r i l y  d e t r i -  

mental  t o  s e p a r a t i o n  s i n c e  f i e l d  programming can r e a d i l y  be used  

t o  release t h e  immobil ized zones.  Also,  i f  w a l l  a d h e s i o n  t r u l y  

r educes  so t o  a v a l u e  n e a r  z e r o ,  t h e  p o t e n t i a l  f e e d  volume w i l l  be  

even h i g h e r  t h a n  expec ted  and t h e  p e r t u r b a t i o n  t o  r e t e n t i o n  and  

p l a t e  h e i g h t  less s i g n i f i c a n t  t h a n  c a l c u l a t e d .  

The m i x t u r e  was 

A r e d u c t i o n  i n  t h e  f i e l d  t o  300 rpm immediately 
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740 GIDDINGS, KARAISKAKIS, AND CALDWELL 

1800 rpm 

B 

I Feed 

I 1 0 I 2 3 4 5 6 

I 
m 

TIME (hrs) 

FIGURE 2. S e p a r a t i o n  of a d i l u t e  mix tu re  of two t y p e s  of l a t e x  
s p h e r e s  w i t h  nominal d i ame te r s  0.357 u m  ( A )  and 0.481 pm (B) .  The 
sample volume (10 ml) w a s  f e d  t o  t h e  s p i n n i n g  channe l  (1800 rpm) 
a t  a r a t e  of 5.8 ml/h.  The working f low rate  was 30.5 ml/h;  t h e  
working f i e l d  was reduced from 880 rpm t o  300 rpm immediately 
f o l l o w i n g  e l u t i o n  of t h e  0.357 p m  beads.  

P l a t e  h e i g h t  d a t a  were a l s o  accumulated i n  o r d e r  t o  examine 

t h e  e f f e c t  of sample d i l u t i o n  and o t h e r  pa rame te r s  on zone broa-  

den ing  and t h u s  on r e s o l u t i o n .  Most i n s t r u c t i v e  a r e  p l o t s  of H 

v e r s u s  t h e  mean working v e l o c i t y  <v>. These p l o t s  are shown in 

F i g u r e  3 f o r  t h e  0.357 pin beads a t  d i f f e r e n t  d i l u t i o n s .  The d a t a  

t e n d  t o  € a l l  on a s t r a i g h t  l i n e  of p o s i t i v e  s l o p e ,  a s  p r e d i c t e d  on 

t h e  b a s i s  of Equa t ion  11. C l e a r l y ,  t h e  p l a t e  h e i g h t  i n c r e a s e s  

w i t h  sample d i l u t i o n  but  t h e  s l o p e  remains n e a r l y  unchanged, a l l  

i n  acco rd  w i t h  t h e o r y .  

The H vs  <v> r e s u l t s  € o r  a l l  e x p e r i m e n t a l  c a s e s  were s u b j e c t -  

ed  t o  l i n e a r  r e g r e s s i o n ,  y i e l d i n g  t h e  i n t e r c e p t  and s l o p e  v a l u e s  
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DILUTE COLLOIDAL SAMPLES 7 41 

FIGURE 3. P l a t e  h e i g h t  H v e r s u s  working f low v e l o c i t y  <v> f o r  
0.357 Iim l a t e x  beads d i l u t e d  i n  volume Vf. 
f e e d  s t e p  proceeded a t  <vf> = 5.76 ml/h a t  1800 rpm. 
r a t e  was reduced t o  880 rpm f o r  s e p a r a t i o n / e l u t i o n .  

The c o n c e n t r a t i o n  o r  
The r o t a t i o n  

shown i n  Tab le  2. The s l o p e s  o b t a i n e d  i n  t h i s  way are i n  good 

agreement w i t h  t h e  t h e o r e t i c a l  v a l u e s ,  e s p e c i a l l y  f o r  t h e  0.357 pm 

beads.  However, t h e  j n t e r c e p t s  show a l a r g e  d i sc repancy ,  w i t h  t h e  

e x p e r i m e n t a l  v a l u e s  s y s t e m a t i c a l l y  l a r g e r .  The r e a s o n s  f o r  t h e  

d i sc repancy  a r e  u n c l e a r .  I f  t h e  p a r t i c l e s  a d h e r e  r e v e r s i b l y  t o  

t h e  w a l l  a s  sugges t ed  by t h e  r e t e n t i o n  s t u d i e s ,  t h e  e x p e r i m e n t a l  

r e s u l t s  shou ld  be reduced,  no t  i n c r e a s e d ,  w i t h  r e s p e c t  t o  t h e  

t h e o r e t i c a l  va lues .  Perhaps t h e  a d s o r p t i o n  and d e s o r p t i o n  s t e p s  

are bo th  s low,  c a u s i n g  a d d i t i o n a l  zone d i s p e r s i o n  which would 

a p p e a r  i n  t h e  i n t e r c e p t  term. More s tudy  is needed r e g a r d i n g  

t h e s e  phenomena. 

CONCLUSIONS 

The r e s u l t s  of t h i s  s tudy  show t h a t  t h e  on-column concen t r a -  

t i o n  method works q u i t e  s u c c e s s f u l l y  i n  d e a l i n g  w i t h  h i g h l y  d i l u t -  

ed  samples.  Op t imiza t ion ,  p a r t i c u l a r l y  h i g h e r  f i e l d  s t r e n g t h s  

d u r i n g  t h e  c o n c e n t r a t i o n  s t e p ,  would a l l o w  h i g h e r  f low r a t e s  and 
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742 GIDDINGS,  KARAISKAKIS, AND CALDWELL 

TABLE 2 

R e s u l t s  of P l a t e  Height  v e r s u s  V e l o c i t y  S t u d i e s  f o r  P o l y s t y r e n e  
L a t e x  bead Samples a t  Various D i l u t e d  Volumes V f .  Expe r imen ta l  

Cond i t ions  i n  Text .  

- ~~~ ~~~~~ 

v f S lope  ( seconds )  I n t e r c e p t  ( c m )  

(ml) dH/d<v> dH/d<v> H p  Hr Hm C H I  13 

( t h e o r )  ( exp)  ( t h e o r )  ( t h e o r )  ( t h e o r )  ( t h e o r )  ( exp)  

11.38 

10 11.38 

20 11.38 

15.73 

10 15.73 

20 15.73 

50 15.73 

Read Diameter ( Um):  0.357 

11.93 0.15 0 0 0.15 0.25 

12.64 0.15 0.10 0.03 0.28 0.78 

11.94 0.15 0.10 0.14 0.39 1.44 

Bead Diameter ( p m ) :  0.481 

14.26 0.01 0 0 0.01 0.30 

13.41 0.01 0.10 0.01 0.12 0.56 

12.66 0.01 0.10 0.04 0.15 0.62 

13.03 0.01 0.10 0.24 0.35 0.67 

i n c r e a s e d  a n a l y s i s  speed. However, e x p e r i m e n t a l  c o n f i r m a t i o n  

would he necessa ry  t o  g i v e  a s s u r a n c e  t h a t  t h e  p a r t i c l e - w a l l  adhe- 

s i o n  d i d  n o t  become i r r e v e r s i b l e  a t  h i g h e r  s p i n  rates. For sam- 

p l e s  of n a t u r a l  p a r t i c u l a t e  systems,  p o s s i b l e  d i f f e r e n c e s  i n  adhe- 

s i o n  c h a r a c t e r i s t i c s  f o r  d i f f e r e n t  t y p e s  of p a r t i c l e s  would have 

t o  be accounted f o r .  

C l e a r l y ,  by e x t r a p o l a t i o n ,  the p r e s e n t  methodology f o r  d i l u t e  

samples  would work f o r  o t h e r  FFF sub techn iques  such as f low FFF, 

t he rma l  FFF and e l e c t r i c a l  FFF. It would work w e l l  i n  c o n j u n c t i o n  

w i t h  programmed systems s i n c e  programmed r u n s  heg in  a t  h i g h  f i e l d  

s t r e n g t h s  as a watter of c o u r s e  (12). The methodology would 

couple  e f f e c t i v e l y  w€th t h e  Kirkland-Yau e x p o n e n t i a l  programming 

w i t h  d e l a y  (13), excep t  t h a t  t h e  t h e o r e t i c a l  i n t e r p r e t a t i o n  would 
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DILUTE COLLOIDAL SAMPLES 7 43 

be compl i ca t ed  i f  d i f f e r e n t  f low v e l o c i t i e s  were used i n  t h e  con- 

c e n t r a t i o n  and  s e p a r a t i o n  s t e p s .  

T h e o r e t i c a l l y ,  t h e  r e s u l t s  of t h e  p r e s e n t  s tudy  a r e  p u z z l i n g  

aPP i n  s e v e r a l  r e s p e c t s ,  p a r t i c u l a r l y  t h e  unexpected cons t ancy  of R 

and  t h e  e x c e s s i v e l y  l a r g e  p l a t e  h e i g h t  i n t e r c e p t s .  However, w i t h  

care, it shou ld  s t i l l  be p o s s i b l e  t o  do a c c u r a t e  p a r t i c l e  cha rac -  

t e r i z a t i o n  work. The constancy of R makes i t  e s p e c i a l l y  s imple  

t o  measure p a r t i c l e  s i z e  f o r  s i n g l e  c u t s  o r  p a r t i c l e  s i z e  d i s t r i -  

b u t i o n s  f o r  t h e  e n t i r e  sample. Dens i ty  pa rame te r s  s h o u l d  be mea- 

s u r a b l e  as b e f o r e  by v a r y i n g  t h e  d e n s i t y  of t h e  c a r r i e r .  S i n c e  

t h e  e x p e r i m e n t a l  and t h e o r e t i c a l  s l o p e s  of t h e  p l a t e  h e i g h t  p l o t s  

are i n  good agreement ,  t h e  s l o p e s  can be used t o  o b t a i n  d i f f u s i -  

v i t y  o r  d e n s i t y  d a t a ,  as sugges t ed  in t h e  t h e o r e t i c a l  s e c t i o n .  

However, t h e  poor agreement of i n t e r c e p t s  means t h a t  p o l y d i s p e r -  

s i t y  v a l u e s  f o r  narrow f r a c t i o n s  would p r e s e n t l y  be d i f f i c u l t  t o  

measure. 

aPP 
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